May 7

Normal extrusions $K \subset L$
Defn: Every poly $f \in K[x]$ with a root in L splits over L
Example If $K C L$ is the spiting field or a polynomial $f \in K C A$, then it normal.
Ex:- $Q \subset \mathbb{Q}(\sqrt[3]{2})$ not normal
bile $x^{3}-2 \in \theta[x]$ has a rit in $\theta(\sqrt[3]{2})$ but closest split
 $Q(\sqrt[3]{\sqrt{2}}, \sqrt{-3})$ is normal!

If $K \subset K\left(\alpha_{1}, \cdots, \alpha_{n}\right)=L$ Let $f_{i}=$ min ply of α Then $K \subset L$ is normal \Leftrightarrow each f_{i} splits /L
(Bl then L is solithng find $f_{1} f_{2} \ldots f_{n}$)

Suppose $K \subset K(\alpha)$. Is His normal?
Let $f=$ min poly of α
Then $K \subset K(\alpha)$ normal $\# f$ splits over $K(\alpha)$

Two nolions for $K<L$
(1) separbbe
(2) nomal

Example: $K C L$ normal, not sepaes.

$$
K=\mathbb{F}_{p}(t) \subset \mathbb{F}_{p}\left(t^{1 / p}\right)=L
$$

If $\alpha=t^{1 / p}$, then $\alpha^{l}=t$

$$
\begin{aligned}
\sim \mathbb{F}_{p}\left(t^{1 / p}\right) & =\mathbb{F}_{p}(t)\left(t^{1 / p}\right) \\
& =\mathbb{F}_{p}(t)[X]\left(x^{R}-t\right)
\end{aligned}
$$

Clain: $\alpha=t^{1 / p} \in \mathbb{F}_{p}^{p}\left(t^{4} p\right)$ is nist separale
Ib min poly is

$$
x^{p-t}=(x-2)^{p}
$$

Exanje- KCL separae, nit nimal $Q \subset Q(\sqrt{2})$ nst nomal V
frite

Recall KCL frise field ext| Reason:

Deft. Say $\alpha \in L$ is separbe/k if its min. poly has no repeated roots in its splits fol

- RCL separable if all $2 \in L$ ar separable. k.

Facts
(1) If $\operatorname{char}(k)=0$, the any field ext $K C L$ is seporele
(2) Let $P=\operatorname{char}(k)>0$,

If ever? element $\alpha \in K$ has a $p^{\text {th }}$ root in K, then any fiche ext $K C L$ is sepadi. The coarscterste of an field is O or a patine integer.

Finite feel p pane
\mathbb{F}_{p} every elenect $\alpha \in \mathbb{F}_{p}$ Satisfios $\alpha^{p}=\alpha$ Wh? $\quad\left|\mathbb{F}_{p}{ }^{*}\right|=p-1 \sim \alpha^{p-1}=1$ for $\alpha \neq 0$.
In part., α is $p^{\text {th }}$ not of α.
Thm There exists a vigue fial $\mathbb{F}_{p^{\wedge}}$ with p^{\wedge} elevats ubere
P is a pane

- $n>0$ is pes, intofe.
- Morcover, $\mathbb{F}_{p} \subset \mathbb{F}_{p_{n}}$ is the spaittrg sicel of $x^{p^{n}}-x$.
- And $\mathbb{F}_{p}<\mathbb{F}_{p}$ is fonit, nomal and sepable.
(1) Uniquerss Let K be a fell with \hat{p} elanats.
Ever elemalt $\alpha \in K$ satafies

$$
2^{n}=2
$$

wh? $\left|k^{x}\right|=p^{n}-1$
$\rightarrow K$ spiliting fied of

$$
x^{p}-x \in \mathbb{F}_{p}[x]
$$

Use uniguan of spitity fiale,

$$
K=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p_{1}}\right\}
$$

each α_{i} is a soot of $x^{n}-x$.

$$
x^{p^{n}}-x=\prod_{i=1}^{p}\left(x-\alpha_{0}\right)
$$

Thm There exists a vigue fidl $\mathbb{F}_{p^{\wedge}}$ with p^{n} elovents ubere
p is a pime

- $n>0$ is pes, intofes.
- Morcover, $\mathbb{F}_{p} \subset \mathbb{F}_{p_{n}}$ is
the spilting ficcel of $x^{p^{n}}-x$.
- And $\mathbb{F}_{p}<\mathbb{F}_{p}$ is frite, noimal and sepcable.
Existence
Let K be the spilting ficll of $x p^{n}-x \in\left[F_{p}[x]\right.$
Neel to shous: $\# K=p^{n}$

Know: $\mathbb{F}_{p} \subset K$ of degree M $\leadsto \# K=p^{m}$ for $m \leq n$
Need to show: $M=n$
Also knowi every elemert $\alpha \in k$ satiosfios $\quad \alpha^{P}=\alpha$ $\rightarrow \alpha$ is a root of

$$
\begin{aligned}
& f(x)=x^{p^{n}}-x \\
& K=\{\underbrace{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}^{m}}_{\text {all roots of } f(x)}\}
\end{aligned}
$$

Not only is $\alpha P_{i}^{P_{n}^{n}}=\alpha_{i}, \quad \mid k^{x} l=p^{m}-1$

$$
\alpha i_{i}^{m}=\alpha i
$$

Each $\alpha=$ is a root of

$$
\cdots x^{x^{m}-x} \mid x^{p^{m}}-x
$$

$$
\begin{aligned}
& M x^{p^{n}-1}=\left(x^{\mu}-1\right)\left(\mid x^{\left.\mid p^{n}-1\right)(a-1)}+x^{\left(p^{n}-1\right)(a-2)}+\cdots+x^{p^{\mu}-1}+1\right) \\
& \left(D^{n}-1\right)=\left(p^{m}-1\right) \cdot a
\end{aligned}
$$

Plugin α
has no roots in K
But K splits field of $x^{p^{?}}-x$
Get contralictin if $\operatorname{dog}\left(b_{1}\right)>0$
Missing detail! Know $K^{x}=\pi / p^{\mu}-1$ is cyclic!
$\Rightarrow \exists \alpha \in K^{x}$ of order $p^{m}-$
τ gereal fact.
\Rightarrow min pily of α is $x^{3}-x$
Since α is ads a root of $x^{p^{n}-x}$, get $x^{p^{\mu}-x} \mid x^{p^{n}-x}$ $\Longrightarrow m \leq n$ cal more. .-

